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Plasmonic excitations in two- and three-dimensional ordered assemblies of metal-dielectric-metal nanosand-
wiches are studied by means of full-electrodynamic calculations using the layer-multiple-scattering method.
Plasmon hybridization results in collective electric-dipole-like and magnetic-dipole-like resonant modes, which
are directly controlled by the lattice constant and the geometrical characteristics of the building units. It is
shown that, in planar arrays of such composite nanoparticles on a dielectric substrate, the magnetic resonance
induces a negative effective permeability, as large as −2, which can be tuned within the range of near-infrared
and visible frequencies. However, as successive layers are stacked together to build a three-dimensional
crystal, the region of negative effective permeability shrinks and disappears for relatively thick slabs. Our
analysis demonstrates that the complex photonic band structure is a valuable tool in the study of three-
dimensional metamaterials and their effective-medium description.
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I. INTRODUCTION

In the last years, the optical properties of metal-dielectric-
metal nanosandwiches, i.e., pairs of coaxial metallic nano-
disks separated by a cylindrical dielectric spacer, attract con-
siderable attention because they exhibit tunable plasmonic
resonances. Studies of multilayered gold-silica nanodisks re-
vealed the existence of strong plasmon resonances that can
be tailored by varying the thickness of the dielectric layer.1

Additionally, it was shown that a pair of gold nanodisks
stacked in a sandwichlike configuration, with a dielectric in
between, produces large enhancement of the magnetic field
when irradiated with a plane optical wave of appropriate fre-
quency, if the distance between the nanodisks is optically
small, an effect which can be rationalized in terms of a
magnetic-dipole resonance.2 Moreover, systematic investiga-
tions of two-dimensional �2D� arrays of gold-silica-gold
nanosandwiches on a dielectric substrate revealed a bimodal
resonant response at optical frequencies due to plasmon hy-
bridization. The degree of electromagnetic �EM� coupling in
the system can be controlled by varying the aspect ratio of
one of the disks in the layered particle.3,4 Such structures can
be synthesized in the laboratory using modern self-assembly
and lithographic techniques and provide impressive opportu-
nities for tailoring the light-matter interaction. The particle-
plasmon modes of the individual metallic nanodisks of the
nanosandwich interact with each other and give rise to a
symmetric and an antisymmetric resonant optical mode, by
analogy to the formation of bonding and antibonding elec-
tron orbitals in diatomic molecules.5 In this respect, metal-
dielectric-metal nanosandwiches constitute a class of photo-
nic metamolecules. In their symmetric optical mode, the
electron gas oscillates in phase in the two metallic nanodisks.
In the antisymmetric one, these oscillations have opposite
phase, leading effectively to an electric current nanoloop that
corresponds to a magnetic-type resonance, which is an essen-
tial ingredient in the design of negative-index metamaterials
at visible and near-infrared frequencies.6–8

Metal-dielectric-metal nanosandwiches have been theo-
retically investigated by means of electrodynamic simula-

tions based on the discrete-dipole-approximation1 and the
finite-difference time-domain2–4 methods. However, a sys-
tematic theoretical study of the optical response of periodic
structures of such composite nanoparticles, through full-
electrodynamic calculations that take also into account the
presence of a supporting substrate, is still missing. In the
present paper we employ an extended version of the layer-
multiple-scattering method9–12 to study the optical response
of hexagonal arrays of silver-silica-silver nanosandwiches on
a quartz substrate. We analyze corresponding extinction
spectra and examine the influence of geometrical parameters
of the structure, such as lattice constant and size of nano-
disks, on the collective plasmonic excitations of the system.
We also evaluate the effective electric permittivity and mag-
netic permeability, and examine their dependence on the
above parameters. In addition, we investigate the optical
properties of stacks of successive layers of such composite
particles that build a fcc crystal and discuss general require-
ments the complex photonic band structure must fulfill in
order for an effective-medium description to be valid.

II. PLASMON HYBRIDIZATION IN A METAL-
DIELECTRIC-METAL NANOSANDWICH

The metallic nanodisks, which constitute the building
units of a nanosandwich, are characterized by a �relative�
magnetic permeability �s=1 and a �relative� electric permit-
tivity �s. We assume, to begin with, that �s has the simple yet
effective Drude form13

�s��� = 1 −
�p

2

��� + i�−1�
, �1�

where �p is the bulk plasma frequency and � is the relaxation
time of the conduction-band electrons of the metal, which
accounts for dissipative losses. When using the Drude per-
mittivity of Eq. �1�, it is convenient to express the frequency
in units of �p and consider c /�p as the length unit, where c
is the velocity of light in vacuum. We note that, assuming a
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typical value of 10 eV for ��p, c /�p corresponds to about 20
nm.

A detailed analysis of the particle-plasmon modes of me-
tallic nanodisks has been reported elsewhere.14 Here, we re-
strict ourselves to noting that the optical response of such a
single nanodisk, in air, is dominated by the fundamental
particle-plasmon resonance, which is predominantly of di-
pole electric type. If the nanodisk is described, for example,
by the Drude permittivity given by Eq. �1� without dissipa-
tive losses ��−1=0� and has a radius S=2.5c /�p and a thick-
ness h=c /�p, the resonance frequency is at 0.293�p. For a
silver disk of dimensions S=50 nm and h=20 nm, de-
scribed by the bulk permittivity of silver measured by
Johnson and Christy15 that includes dissipative losses, the
resonance appears at 2.51 eV.

In a metal-dielectric-metal nanosandwich, the interaction
between the particle-plasmon modes of the constituent me-
tallic disks results into a symmetric high-frequency hybrid
mode �the electric field oscillates in phase in the two metallic
nanodisks normal to their axis� and an antisymmetric low-
frequency hybrid mode �the electric field oscillates with op-
posite phase in the two metallic nanodisks normal to their
axis�. This particle-plasmon hybridization can be analyzed in
the light of a simple model of two interacting point
dipoles.2,4,7,8 The electric field at r=rr̂ from a point dipole p
which oscillates with an angular frequency �, assuming an
exp�−i�t� time dependence, is16

E�r� =��1 −
i�r

c
�3�r̂ · p�r̂ − p

r3 +
�2

c2

p − �r̂ · p�r̂
r

�exp�i�r/c� .

�2�

We note that Eq. �2� takes fully into account retardation ef-
fects. For a pair of point dipoles, p1 and p2, separated by a
distance R, in the absence of external field, the field at each
dipole is the field due to the other dipole. On the other hand,
the induced moment on each dipole is the polarizability,
����, times this field. Therefore, the normal modes of the
system for p1 �p2 and R�p1,2 �nanosandwich configuration�
are obtained from the linear system of homogeneous equa-
tions

f��,R�p1 + g��,R�p2 = 0

g��,R�p1 + f��,R�p2 = 0, �3�

where f�� ,R�= �1− i�R /c−�2R2 /c2�exp�i�R /c� and
g�� ,R�=R3 /����. Obviously, Eq. �3� accepts a symmetric
�p1= p2� and an antisymmetric �p1=−p2� solution, for
f�� ,R�+g�� ,R�=0 and f�� ,R�−g�� ,R�=0, respectively.
These equations ensure the existence of nontrivial solutions
of Eq. �3� and their roots in the lower complex-frequency
half-plane define the eigenfrequencies of the symmetric and
antisymmetric mode, respectively.

The resonant response of the metallic nanodisks is cap-
tured in the frequency dependence of the electric polarizabil-
ity tensor. In the present case, only the transversal �normal to
the disk axis� element of this tensor is relevant. Unfortu-
nately, no closed-form solutions exist for the polarizability of
the disk. However, it has been shown by means of numerical

calculations that the polarizability of a disk is close to that of
a spheroid with the same aspect ratio and permittivity,17 i.e.,

���� =
V

4�

�s��� − 1

1 + L��s��� − 1	
, �4�

where V is the volume of the particle and 0�L�1 is the
depolarization factor �L=1 /3 for a sphere�. We assume, for
simplicity, that �s��� has the simple Drude form of Eq. �1�
and choose for the damping factor the typical value �−1

=0.1�p to account for absorptive and radiative losses.18 Con-
sidering nanodisks of thickness c /�p and radius 2.5c /�p, a
depolarization factor of L=0.085 85 was assumed in order to
match the calculated eigenfrequency 
L�p=0.293�p of the
lowest particle-plasmon mode which is relevant here. The
variation in the complex eigenfrequencies of the coupled di-
poles versus their separation, obtained through Eq. �3�, is
depicted in Fig. 1. It can be seen that hybridization leads to a
low-frequency antisymmetric and a high-frequency symmet-
ric mode. The corresponding eigenfrequencies at relatively
large dipole-dipole separations are close to that of the iso-
lated nanodisk, while level repulsion becomes more promi-
nent as the two dipoles approach each other and, conse-
quently, hybridization increases.

III. PLANAR STRUCTURES OF METAL-DIELECTRIC-
METAL NANOSANDWICHES

We now apply the extended layer-multiple-scattering
method to study the plasmonic excitations of hexagonal ar-
rays of silver-silica-silver nanosandwiches on a quartz sub-
strate ��quartz=2.13, �quartz=1�. A periodic array of
nanosandwiches is built of three consecutive layers of appro-
priate nanodisks, through the proper combination of the
transmission and reflection matrices of the component
layers.9–12 For the permittivity of silver we interpolate to the
bulk values measured by Johnson and Christy15 while for
silica we assume a permittivity of 2.13. In order to ensure
adequate convergence in our calculations, we truncate the
spherical-wave expansions at �max=15 and take into account

FIG. 1. Plasmon hybridization in a metal-dielectric-metal
nanosandwich: variation in the complex eigenfrequencies of the
symmetric �s� and antisymmetric �a� modes in a simple model of
coupled dipoles as a function of their separation. The permittivity of
the metal is given by Eq. �1�, with �−1=0.1�p
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151 reciprocal-lattice vectors in the relevant plane-wave ex-
pansions, while the scattering T matrix of the single nanodisk
is calculated with �cut=20 and a Gaussian quadrature inte-
gration formula with 6000 points.12 We consider nanosand-
wiches of radius S=50 nm and typical thickness h1
=20 nm silver, h2=40 nm silica and h3=20 nm silver, ar-
ranged on a hexagonal lattice with lattice constant a0
=250 nm �see Fig. 2�. Such large interparticle separations
essentially correspond to isolated particles as we discuss be-
low.

In order to study the hybridization between the particle-
plasmon modes of the two metallic nanodisks of the
nanosandwich, we keep their thickness fixed �h1=h3
=20 nm� and vary the thickness h2 of the dielectric spacer.
Corresponding extinction spectra �extinction=negative loga-
rithm of the transmittance� at normal incidence are depicted
in the upper panel of Fig. 3. For very thin dielectric spacers,
the extinction spectrum tends to a single-peak structure,
which is essentially the particle-plasmon resonance in the
corresponding array of homogeneous silver disks 40 nm
thick. On the other hand, when the separation between silver
disks in the nanosandwich is larger �typically 	10 nm�, the
spectra exhibit two distinct peaks. With increasing thickness
of the dielectric spacer, the high-frequency peak shifts to the

red while the low-frequency peak shifts to the blue and
gradually becomes more pronounced. Interestingly, when the
separation between silver disks is small ��10 nm� the low-
frequency peak is not observed. Our results are in good
agreement with existing experimental data on isolated gold-
silica-gold nanosandwiches1,3 and can be explained as fol-
lows. The double-peak structure in the calculated extinction
spectra results from the excitation of the composite plasmon
modes of the individual nanosandwiches, weakly interacting
between them. It is worth noting that the shift of the anti-
symmetric mode is larger than that of the symmetric mode,
in agreement with the results of the model calculations
shown in Fig. 1. Moreover, as can be seen in Fig. 1, while
the imaginary part of the eigenfrequency of the symmetric
mode remains practically constant, the eigenfrequency of the
antisymmetric mode moves rapidly away from the real axis
in the lower complex-frequency half-plane, thus implying a
drastic reduction in the lifetime of this mode as the distance
between the dipoles decreases, which is in line with the sup-
pression of the corresponding peak in the extinction spectra
shown in the upper panel of Fig. 3. The interaction between
nanosandwiches increases as we reduce the lattice constant
and is manifested as a small shift of the resonance peaks and
more pronounced extinction, as can be seen in the lower
panel of Fig. 3.

In the case of the planar structures under consideration,
using the point-dipole model of Sec. II, the evaluation of the
local field at a given dipole p0 involves an infinite sum over
all other dipoles pn at sites Rn�0. Because of the periodicity
of the structure, the component of the wave vector parallel to
the plane of nanosandwiches, reduced within the surface
Brillouin zone of the given 2D lattice, k�, is an invariant.
Taking advantage of Bloch theorem pn=p0 exp�ik� ·Rn� and
assuming that the resonant response of the individual
nanosandwiches can be described through an electric or mag-
netic polarizability function, we obtain a secular equation
which gives the �complex� eigenfrequencies of the system
for a given value of k�.19,20 In general, we obtain two rela-
tively narrow bands of resonant modes, ��k��, about the
eigenfrequencies of the antisymmetric and symmetric modes,
respectively, of the single nanosandwich. The modes corre-
sponding to k� =0 are those which are excited at normal in-
cidence. Reducing the lattice constant of the structure, the
increased coupling strength leads to a larger band width13

and thus to a corresponding shift of ��0�, which explains the
shift of the resonance peaks in the lower panel of Fig. 3. It is
worth noting that, though the near-field interactions play the
dominant role in the nearest-neighbor coupling at short lat-
tice constants, far-field interactions, also with more distant
neighbors, are important.21

We now want to describe the array of nanodisks under
consideration by an equivalent homogeneous slab, of thick-
ness D, effective permittivity �eff and effective permeability
�eff. For this purpose, we invert the standard Fresnel equa-
tions which give the transmission and reflection coefficients,
t and r, respectively, of a homogeneous slab described by a
refractive index n2 and an impedance z2, placed between two
semi-infinite homogeneous media with n1, z1 and n3, z3.22,23

Obviously, this procedure takes also into account the pres-
ence of the substrate. At normal incidence, the impedance

2S

h2
h1
h3

q

qy

qx

qz
a0

FIG. 2. Schematic view of a hexagonal array of silver-silica-
silver nanosandwiches on a quartz substrate.

FIG. 3. Extinction at normal incidence of hexagonal arrays of
silver-silica-silver nanosandwiches with radius S=50 nm and thick-
ness of the silver disks h1=h3=20 nm, on a quartz substrate. Upper
panel: lattice constant a0=250 nm. The different spectra corre-
spond to silica spacer thicknesses h2=160, 80, 40, and 20 nm.
Lower panel: silica spacer thickness h2=40 nm. The different spec-
tra correspond to lattice constants a0=250, 200, and 170 nm.
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and the refractive index of the slab can be retrieved through

z2 = 


�r − 1�2 − t2z1z3


�r + 1�2z3
2 − t2z1

2
�5�

and

tan��/2� = 
 i
�r − 1 + t��z3�r + 1� − tz1	
�r − 1 − t��z3�r + 1� + tz1	

, �6�

respectively, where �= �� /c�n2D. The sign in Eq. �5� is un-
ambiguously determined by the condition Re z2	0, required
for a passive medium. Moreover, to ensure an exponential
decay of an outgoing wave, the imaginary part of � has to be
always positive, which fixes the sign in Eq. �6�. The effective
permittivity and permeability of the slab are given by �eff
=n2 /z2 and �eff=n2z2.

As an application, we consider a hexagonal array, with
lattice constant a0=200 nm, of silver-silica-silver nanosand-
wiches, with h1=h3=20 nm, h2=40 nm, and S=50 nm, on
a quartz substrate. It is reasonable to take the effective thick-
ness of the homogeneous slab equal to the total thickness of
the nanosandwich, D=80 nm, though other choices for D
�	80 nm� do not alter much our results. The effective pa-
rameters �eff and �eff retrieved by the method described
above are shown in the left-hand panel of Fig. 4. One ob-
serves a resonance in the permeability in the frequency re-
gion of the antisymmetric mode and a similar resonance in
the permittivity in the frequency region of the symmetric
mode. Interestingly, the resonance in the permittivity is ac-
companied by a small resonance structure in the permeabil-
ity, and vice versa, which indicates that these resonances are
not of solely electric or magnetic type. We obtain a negative
effective permeability as large as −1.77 in the frequency re-
gion between 2.05 and 2.18 eV, and a negative effective per-
mittivity in the frequency region between 2.50 and 2.97 eV.
However, these negative values are accompanied by rela-
tively high losses, with the imaginary part of the refractive
index being as high as 2.5. The corresponding transmission
spectrum is characterized by two local minima, as low as 4%

and 0.5%, near the resonance frequencies of the antisymmet-
ric and symmetric modes about 2.1 and 2.7 eV, respectively.
Enhanced absorption, of the order of 40% and 16%, respec-
tively, is obtained about the two resonance frequencies, as
expected for plasmonic resonances in metallodielectric struc-
tures.

The right-hand panel of Fig. 4 displays the real part of the
effective magnetic permeability, Re �eff, versus the lattice
constant of hexagonal arrays of the nanosandwiches de-
scribed above, in the frequency region where Re �eff�0. As
we have already discussed in relation to Fig. 3, as we reduce
the lattice constant, the interaction between nanosandwiches
is stronger, resulting to more pronounced resonance struc-
tures in the extinction spectrum and more negative Re �eff
within a broader frequency region.

IV. THREE-DIMENSIONAL CRYSTALS OF METAL-
DIELECTRIC-METAL NANOSANDWICHES

Let us consider the general case of a photonic crystal
made of scatterers which exhibit localized resonances, of
electric or magnetic type, in a homogeneous host medium.
We view the crystal as an infinite succession of consecutive
layers, separated by a distance d, parallel to a given crystal-
lographic plane which is taken to be the xy plane. We neglect
dissipative losses in the constituent materials in order to en-
sure an unambiguous interpretation of the corresponding fre-
quency band structure. In such a photonic crystal, the reso-
nant modes of the individual scatterers interact weakly
between them and form narrow bands of collective modes,
which hybridize with the extended band that would be in a
homogeneous effective medium in the absence of resonant
modes. As a result, a frequency gap opens up about the
crossing point of these bands and is referred to as hybridiza-
tion gap by analogy to the s−d hybridization gap in the
electron band structure of transition metals.13 In the gap re-
gion there are no propagating modes of the EM field and the
real-frequency dispersion lines continue analytically in the
complex kz plane.24 In principle, there is an infinite number
of such complex bands but, over a gap region, it is the com-
plex band of the appropriate symmetry with the smallest in
magnitude imaginary part of kz which determines the attenu-
ation of EM waves through a finite slab of the crystal, along
the given direction. Obviously, in the example shown in the
upper panel of Fig. 5, the relevant complex band near the top
of the gap, at the Brillouin-zone center, has Re kz=0 and that
near the bottom of the gap, at the Brillouin-zone edge, has
Re kz=� /d. It is interesting to examine whether such a com-
plex band diagram of a photonic crystal can be associated to
a homogeneous effective medium, at wavelengths long
enough compared to the size of the particles and the lattice
spacing. The presence of collective electric or magnetic reso-
nances in the crystal implies a resonant behavior of the ef-
fective permittivity, �eff, or permeability, �eff, functions,
respectively,25–29 as shown in the lower panel of Fig. 5. Since
there are no dissipative losses, the resonant response function
�either �eff or �eff� is real and exhibits an asymptotic varia-
tion taking negative values within a frequency interval next
to the asymptote. In this region, assuming that the other

FIG. 4. �Color online� Left-hand panel: real �solid lines� and
imaginary �dashed lines� part of the effective permittivity, �eff, and
permeability, �eff, of a hexagonal array, with lattice constant a0

=200 nm, of silver-silica-silver nanosandwiches, with S=50 nm,
h1=h3=20 nm, and h2=40 nm, on a quartz substrate. Right-hand
panel: a map of the negative effective permeability of different hex-
agonal arrays of the nanoparticles described above.
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�nonresonant� response function is real and positive, there
can be no propagating modes of the EM field. We have there
a frequency gap, over which k= ��eff�eff�1/2� /c is purely
imaginary �Re k=0�. We note in passing that, if both �eff and
�eff are negative over a given frequency region, k becomes
real and we have a negative-index behavior. On the other
hand, if absorption is taken into account, k takes complex
values. A clear picture can be obtained if dissipative losses
are neglected. Recalling the corresponding band structure of
the actual photonic crystal, we see that the dominant evanes-
cent modes near the top of the gap correspond, indeed, to
Re kz=0. Consequently, the form of the associated Bloch en-
velope wave functions �exp�−Im kznd	� is compatible with
that of the evanescent modes supported in the effective me-
dium, in the frequency region of negative �eff�eff. On the
contrary, near the bottom of the gap, the dominant evanes-
cent modes, resulting from destructive wave interference
through multiple scattering in the periodic array of scatterers,
correspond to Re kz�0, and such waves cannot be formed in
the effective medium. It becomes clear from the above that a
necessary condition for the definition of a negative-
permittivity or negative-permeability nondissipative 3D
metamaterial is the existence of a gap region where the
proper real-frequency line with the smallest �Im kz� has
Re kz=0. This conclusion is in agreement with recent studies
which show that the validity of the effective-medium de-
scription of photonic crystals is restricted by the accuracy of
the single-mode approximation.30,31

We now consider a fcc crystal, built as a sequence of
�111� planes of nanosandwiches consisting of two metallic
nanodisks, of radius S=2.5c /�p and thickness h1=h3=c /�p,
separated by a silica spacer of thickness h2=2c /�p. The
crystal has a lattice constant a=
2a0=10
2c /�p and the dis-
tance between successive �111� planes is d=a
3 /3. We as-
sume that the permittivity of the metallic disks is described
by Eq. �1�, and we deliberately disregard absorption ��−1

=0� in order to be able to calculate the frequency band struc-
ture in an unambiguous manner. The left-hand panel of Fig. 6
shows the corresponding photonic band structure along the
�111	 direction. At low frequencies we obtain a doubly de-
generate linear dispersion curve, as expected for propagation
in a homogeneous medium characterized by a frequency-
independent effective refractive index. At higher frequencies
the band structure is dominated by flat, almost dispersionless
bands, which originate from the antisymmetric and symmet-
ric plasmon modes of the nanosandwiches, about 0.24�p and
0.35�p, respectively. These resonance bands hybridize with
the extended band that would be in the effective medium to
produce the doubly degenerate bands in the photonic crystal
shown in the left-hand panel of Fig. 6. The doubly degener-
ate bands couple with an EM wave incident normally on a
�111� slab of this crystal, leading to measurable transmit-
tance, as shown in the right-hand panel of Fig. 6.

As can be seen in the left-hand panel of Fig. 6, sizeable
gaps open up in the frequency band structure of the photonic
crystal under consideration. Over the gap regions we show
the real-frequency lines for complex eigenvalues kz that cor-
respond to the doubly degenerate bands with the smallest in
magnitude imaginary part �plotted in the grey-shaded areas�.
These lines are the analytic continuations in the complex kz
plane of the bands below and above the gaps and determine
the attenuation of the wave field over these regions;
ln T���=−2dNL Im kz���+const, for a given value of k�.32

This is indeed observed in the right-hand panel of Fig. 6,
where we show the logarithm of the transmittance for a wave
incident normally on a slab of the given crystal consisting of
NL=8 �111� planes. Interestingly, in the frequency region of
the antisymmetric plasmon modes of the nanosandwiches,
there is no gap region where the relevant complex band has
Re kz=0. This implies that the given 3D crystal does not
exhibit a negative effective permeability. It is worth noting

FIG. 5. Upper panel: a photonic crystal of resonant units �left�
and a typical schematic example of its complex band structure
along a given �z� direction �right�. In the gap region, Re kz is shown
by dotted lines and Im kz is plotted in the gray-shaded areas. The
thin lines show the extended and resonance bands, in the absence of
hybridization between them. Lower panel: the corresponding
effective-medium resonant permittivity or permeability �left� and
complex band structure �right�. The hatched region marks the fre-
quency gap.

FIG. 6. Left-hand panel: the photonic band structure of a fcc
crystal, with lattice constant a=10
2c /�p, of nanosandwiches con-
sisting of two metallic disks of radius S=2.5c /�p and thickness
h1=h3=c /�p, separated by a silica spacer of thickness h2=2c /�p,
in air, along the �111	 direction. The permittivity of the metallic
disks is described be Eq. �1�, with �−1=0. Apart from the ordinary
frequency bands �kz is real�, we also show, over the gap regions, the
doubly degenerate real-frequency lines for the complex eigenvalues
kz with the smallest in magnitude imaginary part �Re kz is shown by
dotted lines and Im kz is plotted in the gray-shaded areas�. Right-
hand panel: transmittance at normal incidence of a slab of NL=8
�111� planes of the above crystal, in logarithmic scale.
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that, for a single �111� plane of this crystal, we retrieve a
negative effective permeability, as large as −0.18, between
0.240�p and 0.254�p. However, as we add successive layers
in order to build the fcc crystal under consideration, this
region shrinks and finally disappears for relatively thick
slabs, due to multiple scattering between the layers. This
finding also holds for a quite wide range of lattice constants,
as we verified by systematic numerical calculations. On the
other hand, the existence of a gap region, just below the flat
band of symmetric modes, where the doubly degenerate
complex band with the smallest �Im kz� has Re kz=0 is con-
sistent with a negative-permittivity effective-medium behav-
ior in this frequency region, which subsists as we grow the
photonic crystal layer by layer.

The evolution of the frequency band structure of the pho-
tonic crystal under consideration by increasing the number of
layers, NL, is depicted in Fig. 7. The transmittance over the
region of the extended band in the left-hand panel of Fig. 6
exhibits the well-known Fabry-Pérot oscillations due to mul-
tiple scattering between the surfaces of the slab. The maxima
of these oscillations appear at frequencies �n, which corre-
spond exactly to discrete values of the wave number kz
=n� /dNL, deduced from the associated dispersion line in the
left-hand panel of Fig. 6, i.e., when the slab thickness equals
an integral multiple of a half Bloch wavelength. The gap
regions can be identified as the frequency intervals of prac-
tically vanishing transmittance, already in very thin slabs
�NL	2�. Finally, the Fano resonance structures in the trans-

mittance of the slabs32 are clearly due to the appropriate
collective antisymmetric and symmetric plasmonic modes of
the nanosandwiches of the individual layers interacting very
weakly between them. It is worth noting the fact that these
resonances appear at frequencies along the associated real-
frequency line corresponding to Re kz=n� /d�NL+1� , n
=1,2 , . . . ,NL in the left-hand panel of Fig. 6, which implies
that the number of transmission resonances increases with
the thickness of the slab,33 as shown in the right-hand panel
of Fig. 7.

V. CONCLUSIONS

In summary, we reported on the optical response of 2D
and 3D ordered arrays of metal-dielectric-metal nanosand-
wiches, by means of full electrodynamic calculations using
the extended layer-multiple-scattering method. In addition,
we presented a simple coupled-dipole model that explains
plasmon hybridization in a single nanosandwich, enabling
physical insight into the formation of a symmetric and an
antisymmetric resonance recently reported in the experiment.
We showed that the extinction spectrum of planar periodic
nanosandwich assemblies on a dielectric substrate is charac-
terized by a double-peak structure, which can be tuned by a
proper choice of the geometrical parameters involved. Our
results corroborate that such systems, with a tailored optical
response, can be useful for practical applications, e.g., as
chemical and biological sensors, while the presence of an
antisymmetric resonance induces a negative effective perme-
ability, which makes metallodielectric nanosandwiches po-
tential candidates as building units in the design of negative-
index metamaterials. However, as successive layers are
stacked together to build a fcc crystal, the region of negative
effective permeability shrinks and disappears for relatively
thick slabs. This leads to the conclusion that one cannot al-
ways infer an effective-medium description and deduce the
relevant parameters of 3D metamaterials from the response
of single layers or even very thin slabs, which agrees with
the results of Rockstuhl et al.30 We introduced the complex
photonic band structure as a tool in the study of 3D metama-
terials and established additional criteria for the validity of
their effective-medium description. The present work dem-
onstrates the efficiency and accuracy of our recently devel-
oped extended layer-multiple-scattering method in the study
of complex 2D and 3D structures of composite metallodi-
electric nanoparticles of arbitrary shape.
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